

Monitorización de estructuras de material compuesto mediante sensores de fibra óptica

Malte Frövel

Instituto Nacional de Técnica Aeroespacial

Área de Materiales Compuestos

frovelm@inta.es

Tel.: 6507

Sobrevista de la presentación

Base del funcionamiento de los sensores de Bragg

- Introducción de actividades del INTA en la monitorización estructural mediante sensores de fibra óptica
- Seguridad en vuelo de aviones no tripulados
- Detección de daños en estructuras aeroespaciales
- Monitorizar reparación de estructuras metálicas con parches de material compuesto
- Sensores para la monitorización estructural en ámbitos de alta radiación
- Sensores para detección de hidrógeno

Basic theory and

On line data evaluation

of Fiber Bragg grating Sensors, FBGS

FBG-strain and T sensor concepts

Sensores para detección de fugas de hidrógeno

Example: Technology Demonstrators CryoFOS

CryoFOS: Technology Demonstrator

Embedded FBG $\epsilon\text{-sensor:}$ Temperature Compensation

•Alfredo Güemes, Malte Frovel, Jose Maria Pintado, Ignacio Baraibar, Encarna del Olmo; "Fiber optic sensors for hydrogen cryogenic tanks" 2nd Europ-Conf.-on-SHM, Munich, DEStech publications, 2004

EADS CASA ESPACIO

CryoFOS: HYDROGEN SENSORS

OPTICAL FBG COATED WITH A THICK (2-4 MICRONS) Pd LAYER

Absorption – Desorption cycles at T= (50°C)

Absorption – Desorption cycles at T= (23°C)

- Phenomena absorption /desorption are reversible, if enough time is given.
- The thick Pd layer did not attain saturation of H2 during Absorption → <u>Qualitative Detector</u>
- Desorption is slower (characteristic times 6 time larger)

•Alfredo Güemes, Malte Frovel, Jose Maria Pintado, Ignacio Baraibar, Encarna del Olmo; "Fiber optic sensors for hydrogen cryogenic tanks" 2nd Europ-Conf.-on-SHM, Munich, DEStech publications, 2004

Absorption – Desorption Cycles at T= (-35°C)

Direct Injection after Cryogenic Tests

Proyectos y actividades

Supervisión, SHM y autodiagnóstico en Sistemas

2000 a 2016

Sensores de fibra óptica, FBGSs, embebidos

SMAFO - Fiber Optic Sensors for Structural Monitoring of Launchers

Acc. max: 54g entre 10 Hz a 2000Hz

Área de Materiales Compuestos

INTA

SHM del helicóptero Mi8/17 Ensayos de caída libre y fatiga Proyecto ASTYANAX / EDA

Selección y caracterización del sistema

- Characterización sensors: -55°C y 80°C
- Desarrollo de sensores de ε-plast.
- Ensayos de adhesión
- Desarrollo equipo

Instrumentación

- Selección puntos
- Instrumentar marcos y tailboom
- Integración equipo

Primera aplicación de sensores de medición de deformaciones plásticas en ensayos de caída libre conocidos

Aportaciones científicas/ tecnológicas

Ensayos de caída libre

- Trasmisión de datos en tiempo real
- Evaluación de datos de caídas de diferentes alturas

INTA

Área de Materiales Compuestos

Verificación de sensores de fibra óptica tipo Bragg en el espacio

Proyecto OPTOS-FIBOS

FIBOS

Selección y caracterización del sistema

- Caracterización
 transductor
- Diseño de sistema de medición

Instrumentación

- Instrumentación FIBOS
- Calibración T en ambiente
- Calibración T en vació

Ensayos en orbita

- Optimización del software
- Definición de puntos de medida en orbita
- Evaluación de los datos

Aportaciones científicas/ tecnológicas

Seguridad en vuelo de aviones no tripulados

(ma

Sistema de monitorización de cargas en vuelo

Interrogador FSI de INSENSYS- time domain

FBGS de deformación y Temperatura

1. configuración: 4x ε, 2x T-Sensores

2. configuración: 16x ε, 4x T-Sensores

Data analysis

Detección de sobrecargas

t*25 s

MILANO

28 / 16

SHM en UAV tipo MALE

Objetivos: Certificación

Optimización del diseño Detección de daño Sostenibilidad

Instrumentación

- Desarrollo y certificación de equipo de vuelo
- Desarrollo de la red de sensores/ técnica de integración
- Robustez del sensor harness

SECRETARIA DE ESTADO DE DEFENSA

Evaluación y Pronostico

- Redes Neuronales para estimar cargas de vuelo
- Ensayos en tierra y FEM para entrenar RN
- Técnicas estadísticas de PCA para detección de daño
- Modelización e ensayos en tierra para PCA

Ensayos en vuelo

- Medición de cargas en vuelo
- Evaluar cargas y daño con RN y PCA
- Pronostico de vida
 restante
- Minimización de falsas alarmas y fiabilidad de prognosis

MILANO

MILANO

Fatiga

Detección de daños en estructuras aeroespaciales

Automatic Layering Process

Contacto: Airbus Defence and Space Dr. Encarna del Olmo

Iso grid Technological Demonstrator: ICARO project

- Compression tests

 in step loads on
 cylinder sectors to
 verify results of the
 entire cylinder
- Consecutive cuts of bars and repetition of the compression test

• Measured: corresponding strain distribution in the FBGSs

Sector

Iso grid Technological Demonstrator: ICARO project

Integrated Optical Sensors for Debond Detection

SECRETARIA DE ESTAD

INTA

GOBIERNO MINISTERIO DE ESPAÑA DE DEFENSA

Dynamic Test Results: FBGS

 Un gran reto en la inspección de estructuras de material compuesto.
 ¡Una vez quitado la carga, por detrás no se ve nada de la rotura!

Monitorización de reparaciones pegadas

Monitorización de reparaciones pegadas

Parche monitorizado del INTA en un ensayo de fatiga de un panel rigidizado del botalón de cola de un helicóptero

> Se ha podido detectar el avance de despegues provocados antes de que tengan un tamaño critico

Monitorización de reparaciones pegadas

MINISTERIO DE DEFENSA

INTA

C- Scan

Sensores para la monitorización estructural en ámbitos de alta radiación

Medicina

Aceleradores de partículas

Centrales nucleares

Fisics Institute of Cantabria (IFCA); Spanish Center for Particle Accelerators (CNA),; Electronic Engineering Dpt., University of Sevilla (CNA) INTA Aportaciones científicas/ tecnológicas Área de Materiales Compuestos Monitorización de CNA estructuras en ambientes de alta radiación otal Weight : 14,500 verall diameter : 14,500 verall length : 21,60 CMS tracker. PGD cooled composite bridge Aplicaciones Instrumentación Selección y Monitorización del Integración estructural • caracterización de ٠ de sensores posicionamiento sensores Medición del CMS en el LHC/ CERN ٠ ٠ Ensayos en ciclotrón ٠ comportamiento **BELLE II en el KEK** ٠ bajo radiación de durante la radiación protones

Transductores

45

- 15,5 MeV. 10 Mrad dose
- Evaluar sensores aptos para el CERN y KEK

Results: sensitivities before and after proton radiation

Resumen de la presentación

- Actividades del INTA en la monitorización estructural mediante sensores de fibra óptica
- Seguridad en vuelo de aviones no tripulados
- Detección de daños en estructuras aeroespaciales
- Monitorizar reparación de estructuras metálicas con parches de material compuesto
- Sensores para la monitorización estructural en ámbitos de alta radiación
- Sensores para detección de fugas de hidrógeno

Gracias por vuestra atención

Malte Frövel

frovelm@inta.es

Tel.: 6507

